T 0 - and T 1 - reflections
نویسنده
چکیده
In an abstract category with suitable notions of subobject, closure and point, we discuss the separation axioms T0 and T1. Each of the arising subcategories is reflective. We give an iterative construction of the reflectors and present characteristic examples.
منابع مشابه
Bounding extremal functions of forbidden 0-1 matrices using (r, s)-formations
First, we prove tight bounds of n2 1 (t−2)! α(n)t−2±O(α(n)t−3) on the extremal function of the forbidden pair of ordered sequences (123 . . . k)t and (k . . . 321)t using bounds on a class of sequences called (r, s)formations. Then, we show how an analogous method can be used to derive similar bounds on the extremal functions of forbidden pairs of 0 − 1 matrices consisting of horizontal concate...
متن کاملReflections on Companion Animals
" " " , , , · . , , . " > ' , " ' ' ' C C { ; . ' ' ' ' ; : ' ' ' ' ' ' ~ ' ' . ' ' , " ' ; · ~ " t ; ~ . · : : ; h . ; £ ; ~ : o 0 : ' Z , ~ ~ " i b t $ 7 ~ . . , ~ ; , ~ " : 0 " , o . , . , , _ : . , i ; t ! ; ; c . ' ~ ~ i ; o c : . ; ~ ; ; ; , , · c , , ; " ' : : · : · ' ; . ! , 1 l ' % c \ ; ; : ; : ' ; ~ ' 1 : , , , ; . , ; ; ; ; ' j ¢ ' ; , ; ; : ; ~ , ~ , , ~ ~ , , , , , 4 , , , , . , ,...
متن کاملInverse Problems for Time-Dependent Singular Heat Conductivities - One-Dimensional Case
An inverse boundary value problem for the heat equation is considered on the interval (0, 1), where the heat conductivity γ(t, x) is piecewise constant and the point of discontinuity depends on time: γ(t, x) = k2 for 0 < x < s(t) and γ(t, x) = 1 for s(t) < x < 1. It is shown that k and s(t) on the time interval [0, T ] are determined from the partial Dirichlet-to-Neumann map: u(t, 1) → ∂xu(t, 1...
متن کاملPrinciples of Resolution
Anacrusis. The polynomial f(x, y, z) = (x − y) − (z − y) defines as its real zeroset an algebraic surface X in Euclidean space R. This surface cannot be a manifold, since the polynomial violates at certain points of X the assumptions of the Implicit Function Theorem. The points of failure represent the singularities of X . They are determined by equating the three partial derivatives to zero. T...
متن کاملExponential Stability of Impulsive Delayed Reaction-Diffusion Cellular Neural Networks via Poincaré Integral Inequality
and Applied Analysis 3 Denote by u(t, x) = u(t, x; t 0 , φ), u ∈ Rn, the solution of system (5)-(6), satisfying the initial condition u (s, x; t 0 , φ) = φ (s, x) , t0 − τ ≤ s ≤ t0, x ∈ Ω, (7) and Dirichlet boundary condition u (t, x; t 0 , φ) = 0, t ≥ t 0 , x ∈ ∂Ω, (8) where the vector-valued function φ(s, x) = (φ 1 (s, x), . . . , φ n (s, x))T is such that ∫ Ω ∑n i=1 φ2 i (s, x)dx is bounded ...
متن کامل